Step of Proof: nat_ind
12,41
postcript
pdf
Inference at
*
1
0
1
I
of proof for Lemma
nat
ind
:
1.
P
:
{k}
2.
P
(0)
3.
i
:
.
P
(
i
- 1)
P
(
i
)
4.
j
:
5.
j
0
P
(
j
)
latex
by (\p.IntInd (get_int_arg `hn` p) p)
latex
1
: .....downcase..... NILNIL
1:
5.
j
< 0
1:
6. ((
j
+1)
0 )
P
(
j
+1)
1:
(
j
0 )
P
(
j
)
2
: .....basecase..... NILNIL
2:
3.
i
:
.
P
(
i
- 1)
P
(
i
)
2:
(0
0 )
P
(0)
3
: .....upcase..... NILNIL
3:
5. 0 <
j
3:
6. ((
j
- 1)
0 )
P
(
j
- 1)
3:
(
j
0 )
P
(
j
)
.
Definitions
n
+
m
,
a
<
b
,
i
j
,
,
n
-
m
,
,
x
:
A
.
B
(
x
)
,
#$n
,
x
(
s
)
,
,
,
x
:
A
B
(
x
)
,
P
Q
origin